报告题目:
	        Almost everywhere convergence of Bochner-Riesz means for the Hermite operators
	        报  告  人:颜立新
	        工作单位:中山大学数学系
	        报告时间:2022-05-05 10:00-12:00;
	        腾讯会议ID:406-520-643
	        
	        报告摘要:
	        In this talk we will discuss almost everywhere convergence of Bochner-Riesz means for the Hermite operator H = −∆+ |x|2  in Rn . Surprisingly, for the dimensions n ≥2 our result reduces the borderline summability index for a.e. convergence for  f∈Lp(R) with p ≥2 as small as only half of the critical index required for a.e. convergence of the classical Bochner-Riesz means for the Laplacian.  When n = 1, we show a.e. convergence holds for  f∈Lp(R) with p ≥2 whenever λ> 0. Compared with the classical result due to Askey and Wainger, we only need smaller summability index for a.e. convergence. This is a joint work with P. Chen, X.T. Duong, D.Q. He and S. Lee.
	        报告人简介:
	        颜立新,教授,博士生导师,主要从事调和分析领域的研究,已在J. Amer. Math. Soc., Comm. Pure Appl. Math., Memoirs of AMS,  Math. Ann., J. Math. Pures Appl., Adv Math. 等数学期刊发表学术论文八十余篇。